

Assurance of COTS software
towards mathematical validation

Victor Yodaiken
Finite State Research

Austin TX
yodaiken@fsmlabs.com

Plan:

What is the problem we want to solve?

What are some fun properties?

Why formal methods are so weak

Steps forward

What are we doing?

1)Trying to understand our design objectives
2)Trying to get some assurance that the design

meets the design objectives and find places
where we need to compensate

3)Trying to get some assurance that the code
implements the design

4)Managing and evaluating risk.

What are we doing?

1)We're interested in commercial enterprise
systems.

2)Those systems are constrained by cost and
time to market

3)Those systems are not going to be written from
scratch to DO-178B/EAL7 specs (assuming the
unproven claim that such efforts produce better
code)

4)We're going to be piling Linux, Oracle, Apache,
Windows, MySQL, Java ... together.

What are we not too doing?

1)Eliminating all doubt and attaining 100%
certainty

2)Getting rid of the need for good design: some
designs will be more assurable than others.

3)Getting rid of the need for good programming:
see above

Most ignored true statement in programming:
THERE IS NO SILVER BULLET

Why is this so hard?

1)Engineering is inherently failure prone: bridges
still fall down.

2)Complex systems have ridiculously high
numbers of states. Interesting software is large
and complicated.

3)Components of discrete state systems do not
have nice dumb additive properties like those
found in physics.

4)Discrete mathematics is either intractably hard
or in a primitive condition.

Fun properties

1)Live: Every Linux/Windows process in set P
gets at least 1 millisecond of compute time
every second.

2) No Linux process ever writes on the password
file unless it is running an executable in set S

3)The highest priority real-time thread is never
waiting more than T microseconds to run and
once it starts runs to self-suspension unless a
higher priority threat preempts it.

Use traditional engineering methods
● Break problem into more tractable parts
● Defense in depth
● Cross check
● Regression tests and coverage
● Informal testing.
● Try for precision and arithmetic in specs

An enterprise configuration may be
small

Linux or BSD (or Windows)

FSMLabs
RTMS

Standard Linux APPs
and Drivers

and middleware

POSIX RT
Apps and Drivers

Linux or BSD

RT Networking
trading protocol

RT Trading systeml

RT
Network

In Core DB

Back end management

Management
Network

Low power compact PC

An enterprise configuration may be
large

Multi-core sever

FSMLabs
RTMS

LinuxPOSIX RT
Apps and Drivers

RT Networking
and Time Servicel

LRT Simulation App

RT
Network Cluster
Synchronization

RT Graphics

Management
Network

Windows
Linux ...

Applications
and services

VM+ OS

Assurance in depth strategy
● RTMS is 80% coverage with extensive

regression and stress test. Increase this. Add
static checker.

● Linux/BSD base is stressed and used to run
software which can fail. Develop automated
regression and static check – there is no
excuse for the absence of these.

● RT layer software monitors for correct system
operation and can force reboot

● Security add-ons like SELinux software can run
on the Linux layer for interlocking security

Assurance in depth strategy
● Validate what can be validated - take

advantage of the smaller and simpler RT base.
● Place critical code in validated environment
● Cross-check between domains and on

semantic levels.

Numbers
● Try to express properties numerically: delays,

max processes, frequency of an event, ...
● State machines – what everyone is converging

on anyways
● Use recursion to describe state change instead

of listing states: After an A transition the output
of X is equal to F(a,current output of X
current output of Z)

● Use recursion for composition
● www.yodaiken.com/w

Final comments

FSMLabs
sales@fsmlabs.com
yodaiken@fsmlabs.com
www.fsmlabs.com

(347) 404-5376
Fax: (866) 724-4435

mailto:sales@fsmlabs.com
mailto:yodaiken@fsmlabs.com
http://www.fsmlabs.com/

